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Throughout this document, references to sections and equations beginning
with a number (as opposed to a letter) refer to the main article (Krivitsky
and Morris, 2016).

APPENDIX A: COMPUTATIONALLY EFFICIENT APPROXIMATION
USING NETWORK SIZE ADJUSTMENT

Here, we give details for the computational approximation mentioned in
Section 5.2 and derive its properties.

Krivitsky, Handcock, and Morris (2011) suggested an approach for a
network-size-invariant parametrization for some ERGMs for undirected graphs,
where a network of size |N | is modeled with an offset term, i.e.,

(A.1) Prg(Y = y;xN ,θ) ≡ exp{− log(|N |)|y|+ θ>g(y,xN )}
κg(θ,xN )

, y ∈ 2Y(N).

This adjustment works, particularly, for network processes that fulfill certain
heuristics: locality, in that as the network size changes, an individual actor’s
egocentric view of the network does not, on average, change; and stable
degree distribution and per-capita mixing, in that the distribution of the
number of ties an actor has (and the distribution of attributes of those to
whom the actor has ties) remain stable as network size changes, provided the
composition is preserved. For network processes and ERGM terms fulfilling
this, networks having similar structure and composition but different sizes
produced the same parameter estimates after the network size adjustment.
They demonstrated this rigorously for dyadic-independent ERGM terms and
by simulation for degree distribution terms. (Hunter et al., 2008)

This finding suggests a straightforward computational shortcut: instead
of constructing the full population network over actors N , one can construct
a “scaled-down” version N ′ ⊆ N having the same composition (distribution
of x) and large enough for the estimates to have asymptoted. Fitting (A.1)
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with N replaced by N ′ and g̃(eS) replaced by g̃(eS)× |N ′|/|N | would then

yield θ̃
N ′ ≈ θ̃N .

A.1. Requirements for the adjustment. By design, the network
composition is fixed, with only size changing, so for the adjustment to work
in our case, the ERGM must be local (which, in this case, holds by con-
struction as described in Section 3.1) and degree distribution and per-capita
mixing must be stable. In the context of egocentric ERGMs, this can be
operationalized as the distribution of individual measurements h(ei) being
unaffected by the network size. This is a property of the model, not of the
data, and from the perspective of the model, this requires that,

(A.2) lim
|N ′|→∞

|N ′|−1µN ′
g (θ) = λg(θ),

with λg(θ) being the asymptotic per-capita expected value of h, if the dis-
tribution of xN ′ does not change. (Intuitively, consider a sequence of actor
attribute sets xN ′1

,xN ′2
, . . . such that xN ′i

is xN ′1
replicated i times.)

Verifying the property (A.2) requires deriving a closed form for µg(·)—at
least asymptotically. Krivitsky et al. (2011, Sec. 4.3) showed this property for
some dyadic-independent ERGM terms, but for dyadic-dependent ERGMs,
it may not be possible to do so. In practice, this property only needs to
hold in the neighborhood of the estimate θ̃, so it can be can be checked by
simulating from the fitted (A.3) at a variety of network sizes with the same
distributions of xN ′ , to confirm that |N ′|−1µN ′

g (θ) does not vary substan-
tially in |N ′| for |N ′| large enough.

A.2. Point estimation. A model fit to network of size |N ′| approxi-
mating the coefficients of a model fit to network of size |N | has the form
(A.3)

Prg(Y = y;xN ′ ,θ) ≡ exp{− log(|N ′|/|N |)|y|+ θ>g(y,xN ′)}
κg(θ,xN ′)

, y ∈ 2Y(N
′),

for g(y,xN ′) estimated by g̃N
′
(eS) ≡ g̃(eS) × |N ′|/|N |. Intuitively, the

smaller a fraction of |N | that |N ′| is, the more positive the offset coeffi-
cient on |y| is, forcing θ to adjust to produce the more sparse network that
N would induce. (More concretely, if, for some k, gk(y) = |y|, its PMLE
coefficient would be shifted by log(|N ′|/|N |)). It is still a regular exponential
family, so the PMLE can be found by solving

s̃cN
′
(θ̃

N ′
) = g̃N

′
(eS)− µN ′

g (θ̃
N ′

) = 0,

where µN ′
g (θ) is the expected value of g(Y ,xN ′) under (A.3).
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A.3. Evaluation of uncertainty. In a network process fulfilling the
heuristics of Krivitsky et al. (2011), the distribution of individual measure-
ments h(ei) should not be affected by the network size: the view of each
individual in the network should not, for a sufficiently large network, be
affected by how large the network is. Therefore, Σ[w,wh] in (4.4) does not
depend on |N |, and, if (A.2) holds, the per-capita network statistics of in-
terest should converge.

Then, provided λg(θ) itself is differentiable,

lim
|N ′|→∞

|N ′|−1∇θµg(θ) = ∇θ lim
|N ′|→∞

|N ′|−1µg(θ) = ∇θλg(θ).

Then, |N |−1∇θµg{θg(µ)} in (4.4) can be approximated by |N ′|−1∇θµN ′
g (θ̃),

estimated as in (4.5). This means that the asymptotic variance from (4.4)
with N ′ in place of N ,

lim
|N ′|→∞

varS(θ̃
N ′

) = lim
|N ′|→∞

{∇θµN ′
g (θ)}−1|N ′|2ΣH/|S|[{∇N ′

θ µg(θ)}−1]>

= lim
|N ′|→∞

{|N ′|−1∇θµN ′
g (θ)}−1ΣH/|S|[{|N ′|−1∇θµN ′

g (θ)}−1]>

= {∇θλg(θ)}−1ΣH/|S|[{∇θλg(θ)}−1]>,

so the variance of the estimator ceases to depend on |N ′| for |N ′| sufficiently
large. This is a logical and welcome result: the variance of the estimator
depends primarily on the sample size, not the population size.

A.4. Scaled estimation procedure. This leads to the following esti-
mation procedure:

1. Construct a pseudopopulation N ′ that is a “scaled-down” N : i.e., the
distribution of xN ′ must be the same as xN .

2. Estimate the scaled sufficient statistic of the ERGM with g̃(eS) ×
|N ′|/|N |.

3. Obtain θ̃, using MCMLE to solve s̃cN
′
(θ̃) = 0.

4. As a byproduct of Step 3, obtain ṽarg{g(Y ,xN ′); θ̃}.
5. Estimate varS(θ̃) as described in Section 4.2, using N ′ in place of N

and xN ′ in place of x.
6. Simulate from the model fit for a variety of |N ′| to test property (A.2).

APPENDIX B: SIMULATION STUDY DETAILS AND RESULTS

In this appendix, we give more details on the simulation study and the
results.



4 P. KRIVITSKY AND M. MORRIS

Table 4
Population network features

Feature g(y) Target Deviation1 θ

Total ties |y| 3
4
|N | = 75k −1.00 −10.394

Isolate count
∑

i∈N 1yi=∅
1
5
|N | = 20k −1.00 1.180

Degree 1 count
∑

i∈N 1|yi|=1
1
2
|N | = 50k −1.00 1.555

Ties on B actors
∑

(i,j)∈y(1xi,l=B + 1xj,l=B) 1|N | = 100k 0.00 0.246

Ties on C actors
∑

(i,j)∈y(1xi,l=C + 1xj,l=C) 1
4
|N | = 25k 0.00 0.000

Within-group ties
∑

(i,j)∈y 1xi,l=xj,l
1
2
|N | = 50k 0.00 1.004

Difference in x·,2
∑

(i,j)∈y|xi,2 − xj,2| 1
2
|N | = 50k +0.06 −0.916

1 — Here, “Deviation” refers to the difference between the statistic of the network
generated and the target value.

B.1. Study design.

B.1.1. Simulated population network. The population network y of size
|N | = 100,000 was constructed to have the following distribution of actor
attributes:
xi,1 categorical attribute with the following composition: “A” (25%), “B”

(50%), and “C” (25%); and
xi,2 quantitative attribute, generated from N(0, 1) distribution.

Simulated annealing was used to find a configuration of ties such that the
network statistics of interest—listed in Table 4—were as close as possible
to their target values, and the differences between the generated network’s
statistics and the target values are shown in the same table. This network
serves as the population network y in this study. (In each case, the difference
is negligible, compared to the magnitude of the statistic.) An ERGM was
fit to the resulting network, producing θ.

B.1.2. Sampling design. We considered two sample sizes, both taken
without replacement: |S| = 1,000, for a sampling fraction of 1%, and |S| =
2,000, for a sampling fraction of 2%; and we considered two sampling de-
signs: a simple random sample and a design with sampling weights that
mimic sources of sampling weights that arise in applications, including over-
sampling of smaller subpopulations and a response rate that varied with the
continuous covariate.

For each of the four combinations of sample size and weighting scheme,
we drew 2,000 egocentric samples. For each of these 8,000 samples, we
used the scaled estimation procedure described in Section A.4 with |N ′| ≈
1 × |S| ≈ 1,000 and 2,000, 5 × |S| ≈ 5,000 and 10,000, and 10 × |S| ≈
10,000 and 20,000 to estimate θ and evaluate uncertainty.
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B.1.3. Sampling weights. We considered two sources of unequal sampling
probabilities:
• Small subpopulations can be oversampled to facilitate separate infer-

ence about them. In our simulation, we reproduce this scenario by
oversampling A and C actors by a factor of 2.
• Sampling weights are also used to control for nonresponse. We emulate

this by setting the response rate of actor i to be proportional to exi,2 ,
though for the sake of simplicity, we assume that actors are drawn
from the population until the target sample size is reached.

This leads to the following sampling probabilities

πi ∝ exp{1xi,1∈{A,C} log(2) + xi,2}, i ∈ N

and wi ∝ 1/πi.

B.2. Results. We summarize the biases in the point estimate for Fig-
ure 1a and compare the standard deviation of the sampling distributions of
the parameter estimates to the standard errors produced by the procedure
in Figure 1b. Deviations from nominal coverage are visualized in Figure 2.
Numerical summaries can be found in Appendix B.3.

In the following section, we focus on the raw observations and patterns,
and we discuss likely reasons and sources of bias in Section 8 in the main
paper.

The unweighted sampling estimates display some bias, though it does not
appear to have a systematic pattern as a function of |N ′| or in the model
term. For |S| = 1,000, none of the estimated biases are greater than 10% of
the standard deviation under repeated sampling, which is to say that bias
accounts for less than 1% of the mean squared error (MSE) of the estimator.
For |S| = 2,000 they are even smaller relative to their standard deviation
(which is, itself, about

√
2 times smaller).

The weighted sampling estimators are, as one would expect, highly biased
for smaller |N ′|. For the largest |N ′|, the bias of the most biased parameter
estimate (Difference in x·,2) is less than 20% of the standard deviation under
repeated sampling (i.e., about 4% of the total MSE), even for |S| = 1,000.
A possible reason why this particular estimate is the most biased is that
egos with small xi,2 are (by design) severely undersampled, which means
that there will exist many samples where the full range of x·,2 is not rep-
resented. This is likely to be less problematic in real-world applications like
the analysis in Section 7, where continuous covariates (like age) have an
explicit range of interest. As expected, estimators under |S| = 2,000 exhibit
uniformly smaller bias, even as a fraction of the smaller standard deviation.



6 P. KRIVITSKY AND M. MORRIS

(θ̃ − θ)/ s.d.(θ̃)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

|S| = 1000

Weighted

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

-0.2 0.0 0.2

Unweighted

|S| = 2000

-0.2 0.0 0.2

Weighted

|S| = 2000

|N ′|
1000
2000
5000
10000
20000

(a) Bias in point estimates

s.e.(θ̃)/ s.d.(θ̃)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

|S| = 1000

Weighted

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

1.0 1.1 1.2

Unweighted

|S| = 2000

1.0 1.1 1.2

Weighted

|S| = 2000

|N ′|
1000
2000
5000
10000
20000

(b) Bias in standard errors

Fig 1: Simulated bias in the point estimates and standard errors: the point es-
timates, normalized by s.d.(θ̃). Dashed lines are positioned at ±1.96/

√
2000,

so about 95% of the simulated biases should fall into these intervals if their
true mean is 0. Some of the biases are truncated to preserve detail.
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Overall, the standard errors under unweighted sampling appear to be con-
servative, overestimating the simulated standard deviation under repeated
sampling by between 1% and 20% in some cases, and there is evidence of
them becoming more accurate as the sample size increases.

This positive bias in standard errors may be a consequence of estimating
the distribution of xN from xS : somewhat counterintuitively, it may reduce
the actual variance of θ̃ in the presence of homophily, because those samples
that happen to contain, say, an excess of members of Group B will also
contain an excess of ties incident on members of Group B, which is consistent
with ERGM behavior for changing composition (Krivitsky et al., 2011).

The resulting Wald confidence interval coverage, summarized in Figure 2,
is consistent with the above observations: in almost all terms, the inter-
vals are somewhat conservative for both unweighted and weighted sampling
(given sufficient |N ′|), likely a consequence of the variance being overesti-
mated. The coverage does appear to improve with the sample size.

We also find that for |S| = 1,000, while most parameter estimates’ sam-
pling distributions were statistically indistinguishable from normal (based
on 2,000 simulated realizations each), the parameters corresponding to to-
tal number of ties and number of ties incident on actors in Group B show
slight deviations from normality in both unweighted and weighted simula-
tions. (Shapiro–Wilk P -val. < 0.01 for each.) The former term’s parameter
estimates exhibit negative skewness while the latter term’s exhibit posi-
tive skewness. This may be because their corresponding statistics are fairly
strongly negatively correlated with each other (because, with B being the
largest group, and there being positive within-group homophily, 82% of the
ties in y involve an actor in Group B). This strong correlation may be
slowing down the rate at which their joint distribution asymptotes, further
exacerbated by actors in Group B being undersampled. For |S| = 2,000,
none are significantly non-normal.

These results are encouraging, in that even with a fairly modest sample
size, and in the presence of fairly heavy weighting, the confidence intervals
are reasonable, provided |N ′| is sufficiently large. In particular, additional
error due to the distribution of xN being inferred from the sample does not
appear to invalidate them.

B.3. Simulation study summary tables. The following tables give

numerical summaries of the simulation studies. θ̃ − θ is the bias of the
point estimates and s.d.(θ̃) is their simulated standard deviation, both ob-
tained based on 2,000 replications of egocentric sampling and estimation;

and s.e.(θ̃) is the mean of the standard errors calculated from (4.5) for each
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(Simulated−Nominal)/(1−Nominal)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

90%

|S| = 1000

Weighted

90%

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

95%

|S| = 1000

Weighted

95%

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

90%

|S| = 2000

Weighted

90%

|S| = 2000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

-1.5 -1.0 -0.5 0.0 0.5

Unweighted

95%

|S| = 2000

-1.5 -1.0 -0.5 0.0 0.5

Weighted

95%

|S| = 2000

|N ′|
1000
2000
5000
10000
20000

Fig 2: Coverage simulation results: the difference between the simulated
and the nominal coverage is given, relative to the nominal probability of
a miss. (Note that this quantity cannot be greater than 1.) Dashed lines
are positioned at ±1.96

√
CL(1− CL)/2000/(1 − CL), so about 95% of the

simulated coverages should fall into these intervals if they do, on average,
equal to nominal. Some of the coverages are truncated to preserve detail.
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replication. Coverages for 90%, 95%, and 99% Wald confidence intervals are
also given.

B.3.1. |S| = 1,000, |N ′| = 1,000.

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.002 0.168 0.195 −0.789 0.273 0.328
Isolate count 1.180 −0.003 0.183 0.204 −0.569 0.280 0.319
Degree 1 count 1.555 0.003 0.118 0.129 −0.258 0.156 0.170
Ties on B actors 0.246 0.004 0.077 0.085 0.398 0.117 0.140
Ties on C actors 0.000 0.000 0.082 0.096 −0.004 0.101 0.119
Within-group ties 1.004 0.004 0.063 0.066 −0.009 0.065 0.069
Difference in x·,2 −0.916 −0.004 0.051 0.051 0.052 0.060 0.059

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 93.4 96.8 99.6 10.1 22.0 63.6
Isolate count 93.6 97.1 99.6 43.1 60.0 87.2
Degree 1 count 92.2 97.0 99.4 55.3 68.0 88.6
Ties on B actors 92.2 96.1 99.1 1.7 5.7 29.8
Ties on C actors 94.8 97.7 99.7 95.0 98.3 99.8
Within-group ties 91.5 95.7 99.2 91.0 95.4 99.2
Difference in x·,2 90.0 94.5 98.9 76.5 84.7 94.3

B.3.2. |S| = 1,000, |N ′| = 5,000.

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.013 0.169 0.195 −0.012 0.183 0.210
Isolate count 1.180 −0.009 0.183 0.204 −0.009 0.215 0.234
Degree 1 count 1.555 −0.001 0.118 0.129 −0.002 0.143 0.149
Ties on B actors 0.246 0.006 0.077 0.085 0.002 0.076 0.085
Ties on C actors 0.000 0.000 0.082 0.096 −0.002 0.076 0.090
Within-group ties 1.004 −0.003 0.063 0.066 −0.003 0.065 0.068
Difference in x·,2 −0.916 0.003 0.050 0.050 0.008 0.056 0.059

Coverage:



10 P. KRIVITSKY AND M. MORRIS

Unweighted Weighted
90 95 99 90 95 99

Total ties 94.0 97.2 99.5 94.2 97.2 99.2
Isolate count 93.6 97.0 99.6 92.3 96.5 99.3
Degree 1 count 92.9 96.5 99.4 91.5 96.0 99.2
Ties on B actors 92.7 96.4 99.3 92.8 96.2 98.9
Ties on C actors 94.8 98.1 99.8 94.7 97.7 99.6
Within-group ties 91.3 95.8 99.2 91.0 95.9 99.4
Difference in x·,2 89.5 94.6 98.8 90.8 94.7 99.2

B.3.3. |S| = 1,000, |N ′| = 10,000.

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.015 0.169 0.194 −0.017 0.183 0.210
Isolate count 1.180 −0.010 0.183 0.204 −0.011 0.215 0.235
Degree 1 count 1.555 −0.002 0.118 0.129 −0.003 0.143 0.149
Ties on B actors 0.246 0.006 0.077 0.084 0.004 0.076 0.085
Ties on C actors 0.000 0.000 0.082 0.096 0.000 0.076 0.090
Within-group ties 1.004 −0.004 0.063 0.066 −0.004 0.065 0.068
Difference in x·,2 −0.916 0.005 0.050 0.050 0.009 0.056 0.058

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 93.7 97.5 99.5 93.9 97.5 99.2
Isolate count 93.2 97.2 99.5 92.7 96.8 99.4
Degree 1 count 92.8 97.1 99.4 91.8 96.3 99.3
Ties on B actors 92.2 95.5 99.2 93.0 96.0 99.1
Ties on C actors 95.0 98.0 99.8 94.7 98.0 99.8
Within-group ties 91.7 95.3 99.2 91.2 95.8 99.2
Difference in x·,2 90.0 94.6 98.6 89.9 95.0 99.1

B.3.4. |S| = 2,000, |N ′| = 2,000.

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.002 0.116 0.133 −0.773 0.188 0.223
Isolate count 1.180 −0.004 0.126 0.141 −0.555 0.190 0.218
Degree 1 count 1.555 −0.001 0.082 0.089 −0.258 0.104 0.117
Ties on B actors 0.246 0.002 0.054 0.057 0.390 0.082 0.095
Ties on C actors 0.000 0.000 0.060 0.065 −0.003 0.073 0.081
Within-group ties 1.004 0.001 0.043 0.045 −0.011 0.046 0.046
Difference in x·,2 −0.916 −0.002 0.034 0.034 0.052 0.043 0.040
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Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 94.0 97.5 99.6 0.2 0.8 6.6
Isolate count 92.9 97.0 99.5 11.3 22.3 52.8
Degree 1 count 92.0 96.9 99.6 26.3 39.0 66.3
Ties on B actors 92.2 96.8 99.3 0.0 0.0 0.4
Ties on C actors 93.0 96.6 99.4 93.5 97.4 99.7
Within-group ties 91.4 95.9 99.4 89.1 94.2 99.0
Difference in x·,2 89.9 95.3 99.2 61.8 73.1 87.8

B.3.5. |S| = 2,000, |N ′| = 10,000.

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.007 0.116 0.133 0.000 0.126 0.143
Isolate count 1.180 −0.006 0.126 0.141 0.001 0.146 0.161
Degree 1 count 1.555 −0.003 0.082 0.089 −0.002 0.095 0.103
Ties on B actors 0.246 0.003 0.054 0.057 −0.003 0.054 0.057
Ties on C actors 0.000 0.000 0.060 0.065 −0.002 0.056 0.060
Within-group ties 1.004 −0.003 0.043 0.045 −0.001 0.046 0.046
Difference in x·,2 −0.916 0.002 0.034 0.034 0.005 0.040 0.040

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 94.7 97.8 99.6 93.6 97.2 99.4
Isolate count 93.0 97.0 99.6 92.9 97.0 99.5
Degree 1 count 92.2 96.8 99.6 92.0 96.5 99.3
Ties on B actors 92.3 96.8 99.4 91.3 95.8 99.1
Ties on C actors 92.8 96.6 99.5 92.6 96.9 99.6
Within-group ties 90.8 95.9 99.4 90.0 94.8 99.0
Difference in x·,2 89.8 94.8 99.2 89.8 95.0 99.1

B.3.6. |S| = 2,000, |N ′| = 20,000.

Summaries:
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Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.008 0.115 0.133 −0.003 0.126 0.143
Isolate count 1.180 −0.006 0.126 0.141 −0.001 0.146 0.161
Degree 1 count 1.555 −0.003 0.082 0.089 −0.002 0.095 0.103
Ties on B actors 0.246 0.003 0.054 0.058 −0.002 0.053 0.057
Ties on C actors 0.000 −0.001 0.060 0.065 0.000 0.056 0.060
Within-group ties 1.004 −0.003 0.043 0.045 −0.002 0.046 0.046
Difference in x·,2 −0.916 0.003 0.034 0.034 0.005 0.040 0.040

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 94.3 97.9 99.6 94.0 97.1 99.4
Isolate count 93.0 97.2 99.7 93.4 96.7 99.4
Degree 1 count 92.3 96.9 99.6 92.0 96.6 99.3
Ties on B actors 92.3 96.9 99.2 91.5 95.9 99.1
Ties on C actors 92.8 96.8 99.4 92.5 97.1 99.6
Within-group ties 90.8 95.8 99.5 90.1 94.8 99.0
Difference in x·,2 89.7 95.0 99.1 89.5 94.6 98.9

APPENDIX C: AUXILIARY RESULTS FOR THE APPLICATION

In this appendix, we report auxiliary results to our analysis in Section 7.
In particular, we discuss the heuristic for our choice of |N ′|, confirm that
our results remain after controlling for age, and verify assumption (A.2) as
it pertains to the models fit.

C.1. Selecting |N ′| for the analysis. Our choice of |N ′| is driven
by the data including sampling weights: inference requires that the N ′ be
as representative of N as possible, and, as we show in the Appendix B,
insufficient |N ′| can significantly bias estimation. We cannot compare the
two situations directly, but, heuristically, the weights are somewhat more
varied in the NHSLS data than in the weighted simulation study: in the
simulation study’s samples of 2,000, wmax/wmin averaged 9.1 for |S| = 1,000
and 9.9 for |S| = 2,000, and in the NHSLS study (after excluding respondents
with missing data), this ratio is somewhat higher, 15.3 (albeit at a greater
sample size). Another metric is the amount by which the variance of the
sample mean would be inflated due to unequal weighting, relative to an

SRS, which equals to |N |−1
∑|N |

i=1w
2
i /w̄

2. This is 1.18 for the simulation
study and 1.34 for the NHSLS data. |N ′| ≈ 5|S| appear to be adequate for
the simulated data, though |N ′| ≈ 10|S| produces a noticeable improvement,
so we select, conservatively, |N ′| ≈ 45,000 ≈ 13.4×|S|. The respondent with
the smallest sampling weight represents about wi/w· = 7.28 × 10−5 of the
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population, so she is represented in N ′ about three times.

C.2. Detailed goodness of fit. In this section, we report goodness of
fit broken down by race and sex. Figure 3 gives a plot analogous to those for
Figure 2a for each combination of these two factors. As expected, Model 3
still clearly has the best fit, though some specific groups have slight devia-
tions. In particular, for the “Other” Males, the model overestimates slightly
the number of isolate actors and underestimates the number of concurrent;
and for Black Males, it slightly underestimates the number of individuals
with two concurrent partners but overestimates the number with three by
about the same amount.

Because these are some of the smaller groups with some of the highest
rates of nonresponse, this may be a consequence of the estimates themselves
being uncertain. In any case, the overall level of concurrency in all groups
except “Other” Males is well modelled.

C.3. Controlling for age. In this section, we report a model fit that,
in addition to representing mixing by race and monogamy, also incorporates
age effects.

In this, we follow the analysis of these data by Krivitsky et al. (2011),
modeling the effects of age semiparametrically. As predictors, we consider
the age of the actor, the square root of age, the age difference and squared
difference in a potential partnership, and the difference and the squared
difference of the square roots of ages. To improve numeric conditioning of the
model, we perform an affine transformation on the ages, shifting and scaling
them into a [−1/2,+1/2] interval: x′i,age = (xi,age−18)/(60−18)−1/2. This
change merely scales the coefficient and changes the baseline coefficients
(number of ties, by sex), without changing the family of distributions being
modeled. For the square root of age effects, the corresponding transformation
is

x′i,√age =

√
xi,age − 18

60− 18
− 1

2
.

The use of the square root and linear effect, rather than linear and quadratic,
is motivated by the notion that the effect of a one-year difference will be
greater for younger actors than older: going from 20 to 21 is likely to have
a greater effect than going from 50 to 51.

The results for Model 3 with age, along with the estimates for Model 3
itself for comparison, are given in Table 5. The most important aspect of
this result is that the coefficients estimated for the Monogamy model have
not changed qualitatively after age effects are controlled for: our results in
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Fig 3: Goodness of fit for degree distribution, for each model, broken down
by sex and race. For each of the six combinations, the degree frequencies
(dot plot) for 100 realizations is compared to those observed in the data.
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Table 5
Coefficients and significance for the Model 3 (main, mixing, and monogamy effects) and
a model that also incorporates age effects. Coefficients reported are in the presence of an

edge count offset of − log(44859) = −10.71.

Main + Mix.
+ Monog. + Age

Actor activity by sex
Female −1.88 (0.31)

??? −1.78 (0.40)
???

Male −1.18 (0.25)
??? −1.08 (0.35)

??

Same-sex partnership −4.52 (0.21)
??? −4.13 (0.21)

???

Actor activity by race
White 0 (baseline)
Black −0.30 (0.38) −0.35 (0.36)
Other 0.93 (0.42)

?
0.87 (0.43)

?

Race homophily by race
Black 5.15 (0.38)

???
5.16 (0.38)

???

Other 2.04 (0.35)
???

2.09 (0.39)
???

White 2.32 (0.36)
???

2.31 (0.39)
???

Monogamy by sex and race
Black female 1.80 (0.47)

???
1.94 (0.50)

???

Other female 2.51 (0.67)
???

2.56 (0.69)
???

White female 2.25 (0.31)
???

2.36 (0.32)
???

Black male 0.99 (0.24)
???

1.11 (0.28)
???

Other male 1.40 (0.31)
???

1.54 (0.33)
???

White male 2.16 (0.25)
???

2.30 (0.25)
???

Age effects√
age effect 3.29 (1.35)

?

age effect −2.73 (1.15)
?

Age difference effects
Difference in

√
age −8.07 (2.20)

???

Difference in age −6.03 (1.92)
??

Squared difference in
√

age 3.22 (3.73)
Squared difference in age 2.32 (2.80)

Older-male-younger-female 0.93 (0.05)
???

Significance levels: 0.05 ≥ ?
> 0.01 ≥ ??

> 0.001 ≥ ???
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Fig 4: Estimated multiplicative effects of the age of ego and age of alter
(ignoring age–sex interaction) on the odds of a tie. Note that the peak of
each ego age curve represents the overall propensity for egos of that age to
have ties.

Section 7 are robust to age effects. (We also performed the degree distri-
bution and component size simulations for the age model. Those were not
qualitatively different either.)

Age effects themselves can be interpreted as well; we provide a visualiza-
tion of the overall estimated age effect in Figure 4. Age difference effects are
particularly significant. There is also strong evidence for the tendency of the
male to be older than the female in a heterosexual partnership.

C.4. Simulation results to verify Assumption (A.2). We test the
assumption (A.2) by simulating from the most complex model fit to obtain
10,000 realizations (with some serial dependence) of g(Y ,xN ′′)/|N ′′| with
|N ′′| ≈ 90,000 with offsets adjusted appropriately. If the assumption is vio-
lated, we would expect them to be different, on average, from the observed
h̃(eS).

We report the simulation results in Table 6. The differences between the
observed values and those simulated for |N ′| ≈ 90, 000 are statistically sig-
nificant in a few cases—as they would inevitably be, given a sufficient sim-
ulation size, but they are not practically so: the statistics with the greatest
relative difference between |N ′| ≈ 45, 000 and |N ′| ≈ 90, 000 are ones with
the smallest counts and effective numbers of observations, so one might ex-
pect them to asymptote more slowly; even among them, the greatest one
has 0.120% difference.



“NETWORK MODEL INFERENCE FROM EGOCENTRIC DATA” SUPPL. 17

Table 6
Difference between the observed per-capita statistics (denoted h̃(eS)) and the per-capita
moments of the sufficient statistics simulated from a network with |N ′′| ≈ 90,000 using

coefficients obtained with |N ′| ≈ 45,000 (denoted µN′′

g (θ̃
N′

)/|N ′′|). The differences have

been scaled by 104 for readability, and the simulation’s standard errors are adjusted for
autocorrelation. Effective Sample Sizes (ESS) are also given. R (R Core Team, 2013)

package coda (Plummer et al., 2006) was used to evaluate the latter.

Observed Simulated
{
µN′′

g (θ̃
N′

)

|N′′| −
Term h̃(eS) h̃(eS)

}
× 104 (ESS, s.e.) Diff.

h̃(eS)

Actor activity by sex
Female 0.396 0.085 (1366, 0.229) 0.002%
Male 0.399 0.033 (1429, 0.228) 0.001%

Same-sex partnership 0.005 −0.056 (4336, 0.034) −0.120%
Actor activity by race (White as baseline)

Black 0.087 −0.287 ( 564, 0.306) −0.033%
Other 0.102 0.242 ( 777, 0.231) 0.024%

Race homophily by race
Black 0.040 −0.113 ( 508, 0.166) −0.028%
Other 0.038 0.136 ( 411, 0.184) 0.036%
White 0.288 0.025 (1421, 0.186) 0.001%

Monogamy by sex and race
Black Female 0.042 −0.148 ( 735, 0.136) −0.035%
Other Female 0.052 0.046 (1025, 0.107) 0.009%
White Female 0.284 0.358 (1749, 0.177)

?
0.013%

Black Male 0.031 −0.268 ( 776, 0.132)
? −0.086%

Other Male 0.041 −0.189 ( 971, 0.122) −0.046%
White Male 0.290 −0.053 (1979, 0.168) −0.002%

Age effects√
age effect 0.104 0.142 (1285, 0.120) †

age effect −0.046 0.069 (1294, 0.125) †

Age difference effects
Difference in

√
age 0.028 0.130 (1135, 0.049)

??
0.046%

Difference in age 0.034 0.113 (1114, 0.058) 0.034%
Squared difference in

√
age 0.004 0.023 (1850, 0.013) 0.055%

Squared difference in age 0.006 0.011 (1787, 0.017) 0.019%
Older-male-younger-female 0.242 0.713 ( 452, 0.504) 0.029%

Significance levels: 0.05 ≥ ?
> 0.01 ≥ ??

> 0.001 ≥ ???

† — Percent differences are not meaningful for statistics that are not counts or sums of
nonnegative quantities.
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